PHYSICAL REVIEW E VOLUME 60, NUMBER 1 JULY 1999

Exact solutions of some urn models of relaxation in glassy dynamics
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We consider two simple models, called “urn models,” for a genétddall, M-urn problem. These models
find applications in the study of relaxation in glassy dynamics. We obtain exact analytical results in these two
cases for the average relaxation timeo reach the ground state. In model | we also obtain the functional
dependance of for largeN, and in model Il we obtain an asymptotibl{~«) dependence of as a function
of the number of urn$1. [S1063-651X%99)03207-9

PACS numbegps): 64.60.Cn, 75.10.Nr

Urn model problems are classical problems in probabilityfind a lower bound forr for the N-ball M-urn problem asr
theory[1,2] which have been widely studied. An attractive — o(N-1) 4 N—3 by a recursive analysis. Complementing

feature of these problems is that they are easy tq formulatgpon Lipowski’s work, Murthy and Kehi6] considered the
but not always easy to solve. The solutions obtained haveyo-urn problem and solved it for an arbitrary initial distri-
therefore, sometimes led to new mathematical techniquegytion ofN balls[i.e., anyK balls in one urn and the remain-
and !n§|ghts. These problem§ have also been popular Wltmg (N-K) balls in another urh and found upper and lower
physicists as models of physical processes. In the last feyo,nds for the relaxation time for various initial arbitrary
years, many paperg3—7] have appeared in literature on giates of the system siz8l). They concluded that =1 sets
some specific urn models as models of the slow dynamics Gfe principal time scale of the problem, and the relaxation
glassy systems. Objections may be raised on the grounds th@hm other states takes negligibly more time than this for

the models are far too simplistic to really capture all thejarge systems. To the best of our knowledge there exists no
features of the complex system. We feel that the study ofyqt analytical solution of this problem fovl(>2)-urn

these models is interesting in its own right, and does show.pg|| case. To this end, in this paper we consider two such
some features such as a critical slowing down as the systepsgels namely, models | and (to be defined explicitly
approaches the ground state. In this paper, we obtain exaghjow), and find an exact analytical formula for the relax-

analytical solutions for two urn models. Ritort's modél is  tion time = for these two models. It may be noted that our
probably the first such model used for this purpose. In thig, qel | is the same as model C of RET], whereas our
model one considerll distinguishable balls which are dis- ,oqel 11 differs from their model A. '

tributed inM boxes. The dynamics is defined as follows. At y\ioqel | We start with an initial distribution o balls in
each time step a ball is picked up randomly and mdepenM urns given b)Ko=(kl,kS, o ,kg/l), wherek‘o is the num-

dently, and moved to a random nonempty box. Moving theb . ; )
: : - . ber of balls in thath urn at the start. At each time step two
ball to an empty box is not allowed. This restriction consti- balls are picked out oN balls such that every pair hgs an

tutes what is popularly known as the entropy barrier, Smceéqual probability of being picked up. Both balls are then

as the number of empty boxes increases with time, there agialaced into the urn to which the second ball belonged. The
fewer and fewer boxes available for the transference of th

ball, i.e., fewer paths in the “phase space” where energy Calgiynamics is such that the ground state corresponds to all

decrease(Energy is defined as minus the number of emptycomlng into a single urn. The quantity of interest is the av-

boxes present at any timeThus relaxation of energy be- erage number of time stepsrequired for this event to occur

comes slower with time. Ritort’s model showed that the re-for the first ime. This is given by

laxation timer averaged over an ensemble of initial configu- o
rations of N balls in M boxes to the ground state goes => > nf(k,n), )
asymptotically as i=1n=0

7=0.39 exp0.6 ™). (1)  with

Making use of the fact that in Ritort’s urn model, the system,
before it reaches the ground stéte., all the balls are in one
box), has to pass essentially through a specific configuration
where one ball is in one urn arld—1 balls are in another wheref(k;,n) is the probability that théth urn contains all
urn, Lipovski [5] found an exact expression far for the N balls for the first time aften time steps,fy(k;) is the
N-ball and two-urn model problem, which enabled him to probability that theith urn is filled with all N balls, and
f(ki,n)/fq(k;) is the conditional probability that this event
occurs for the first time at tima. Notice that the dynamics
*Author to whom correspondence should be addressed. FAXof the process is such that if any urn becomes empty, it
91225560750. Electronic address: dtsrphd@magnum.barctl.ernetéwtomatically goes out of the reckoning. Thus our model is

HZO f(ki,n)="fo(kp), 3)
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exactly like model C of Ref.7]. Though this problem can be
solved directly, we found it convenient to solve it in two

stages. In the first stage, the average time taken for a speci-

fied urn to either contain alN balls or become completely

empty was computed, and this was then used to compute the

guantity of interest.

Let g(k,m) be the probability that an urn contains all
balls or is completely empty for the first time aftertime
steps given that it ha#l balls at the startherek=kg; for

convenience we have dropped the superscript and subscrip
We note that the dynamics of the process is such that th€

distribution of the balls in the othe™M —1) urns does not
affect this quantity. We then write the recursion relation

_ k(N—k)
g(k,m+1)= m[g(k+ I1m)+g(k—1m)]
2k(N—k))
(1—m g(k,m). 4
Multiplying by m and summing, we obtain
N(N—-1)
M= 0.9 My g +my—q]+ ®)

2k(N—K)’

wherem, =X _,mg(k,m), and Eq.(4) is to be solved with
the boundary conditions

m0:0 mN—O (6)

Defining A= m—m,, ; we have from Eq(5),
A=A N(N—-1) -
k=Ak-1F KN=K) ° (7

Here the method of solution differs slightly fofeven and\
odd. We solve it for the cagé=2L. Using Eq.(7), we have

2L(2L—-1)

A=A+ 2

8

However, because of symmetry, _,=—A, . Therefore,

A _2L—1 9
== ©)
Using Eq.(7) repeatedly, and summing, we have
‘ 1
A=A +N(N-1 — 10
TAGNND D g @0
and
2L—-1 "I N(N-1)
My-1=AN-1= (11)

- 4+ — .
L k=C+1 K(N—=K)

We also obtain
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N-1 N-1

- _(N—DQL—1X+_ N(N—-1)
m;= =i L =i k=T+1 k(N—K)
. B N-1 _
_(N=D(2L D+_§: N(N 1{ (12)
L k=L+1 K

Now, in order to have all the balls in one urn we use the
quantity f(k), which is the probability that an urn contain-
'Pg k balls at the start contains all balls at any time. Also

t f(k,n)/fy(k) be the conditional probability that this urn
contains all theN balls for the first time at timen:

fdbz%%ﬂkm. (13

The starting equation fof(k,n) is the same as in the
earlier case:

k(N—K)
N(N—1)

2k(N—K)
 N(N-1)

f(k,n+1)= [f(k+1,n)+f(k—1,)]

+(1 (14)

)f(k,n).

Summing Eq.(14) over alln, we obtain the recursion rela-
tion for fo(k) as

fo(K)=0.9fo(k+1)+fo(k—1)] 1<k=N-1.

(15

for

This is to be solved subject to the boundary conditions

fo(N)=1,

fo(0)=0. (16)
Equations(15) and (16) yield

foll)= (17

Now we use this quantitfy(k) to find the number of time
steps required to obtain all the balls in one urn. We multiply
Eqg. (14) by n+1, and sum over alh, to obtain

nk: O.an+l+ nk,l] + Oqfo(k+ 1) + fo(k_ 1)]

N(N—1)—2k(N—k)
2k(N—K)

fo(k). (18

The boundary conditions are agaig=0 and ny=0. De-
fining A =n,—n,. 1, we have

A=Ak 1+0x, (19

where Ok=Ffo(k+ 1)+ fo(k—21)+(N(N—1)—2k(N
—k)1/2k(N—k))f (k). Substituting forf 5(k) from Eq.(17),
and simplifying, we have

N—-1
N—k’

k= (20)

This yields
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Aj=An_1—G; that this probability is independent of the distribution of the
remaining N—k; balls in the otherM—1 urns. Then
where f(kij,n+1) , satisfies the recurrence relation
N—1
G= > (21) f(k n+1)=£f(k—1n)+;f(k+ln)
=y I ’ N T N(M-1) :
Therefore, (N-k)(M-2)
- Wf(k'n) 27
n.= ZL A (here we have dropped the subsciif k for ease, which
’ yields
R K N—k (N—K)(M—2)
=(N—L)An_1— _= " A
( ) N—-1 ]ZL k;l gk nk—Nnk,1+ N(M—l)nk+1+ N(M—l) nk+1
N—1 k-1 (28)
=(N-L)Ay.1— > o> 1 This gives
k=L+1  j=L
N-1 K N—k A K A_q1+1
2k—N)(N—-1 N — 1) BkT g 2k— ,
=(N—L)Ap_q1— (2k=N)(N-1) N(M—1) N7kt
k=t+1  2(N—Kk)
(22) Ap=M-—1. (29
Because of symmetry, we have After some algebra we obtain
A=Si Ao+ 2, Sk, (30)
Substituting for'n, from Eg. (12), we have Koo 121 Ik
2L-1 2 N(N-1) 20 where
n.= —_—
- 2 k=rr1 2Kk
S =H S,
for largeN; this yields the resulbh, ~N?%/2In2. s
We may rewrite Eq(22) as
(M=D)l
+N§ (2k—N)(N—1) STTNCT 31
n _—
- L% 2(N-K) o5 and
NN-1= N—L ( )
. . . N(M—1)
With a little algebra we obtain, for largd, ny_;~NInN tJ:T'
—N, and using this result and E() for large N we obtain ]
N2, (26) We also haveny=0. Thus
N—1
The functional dep(.arl.c?ancg @Tfon. the number of u.rnM n= 2 Ay (32
will depend on the initial distributionK, of the balls in the k=i

urns. )
Model II: In this model at each time step one ball out of Event 2: Let us consider the case of M urns. L&t
the N balls initially distributed arbitrarily iV urns is drawn . k., ... k. andg;(K,n) be the probability that urnis

randomly and placed randomly in an urn different from thefjjied up at timen before any of the other urns gets filled up:
one from which it was drawn. The quantity we are interested

in is the time taken for all the balls to move into a single urn . M- n .
for the first time. In the case considered by us, evenifanurn  f(k,n)=g;(K,n)+>, > g;(K,n")f(0n—n’).
becomes empty at some time, it is still taken into consider- ™ n"=0

ation, unlike in model A of Ref[7], where any urn, when it (33

becomes empty, is taken out of the reckoning. We define two — L
events. Event 1: Urn i is filled for the first time assuming, NOte thatg; depends orK, the full initial distribution. The
that the dynamics remains the same till this event. Event 2M0ment generating function of E(3) yields

The first time any of theM urns is filled. Event 1: Let M

f_(ki ,n+_1) be the p_robablhty tha_lt urnis filled for the first ?(ki ,z)=5i(ﬁ.z)+2 aj(lz,z)7(0,z), (34)
time at timen+ 1, given that at time O it hal; balls. Note j=i



148 D. ARORA, D. P. BHATIA, AND M. A. PRASAD

where
T(ki,2)= 2, f(ki,mz" (35)
Summing over all (i=1,2,...M) and definingG(IZ,z)
as
- M -
G(K,2)=2, 9i(K.2), (36)
we obtain
M
2, f(ki.2)
G(K,2)= S (37)

1+(M—1)7(02)
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M
n
dG izl M-1

z=1
We can now find an asymptoticN(—«) expression for

7(Kop). From Eq.(30), after a little algebra, it is easy to see
thatAy_;=MN—1, which impliesny_;=ny+An_;~MN.
Further, Ay_,~MN/N<AN~1 Similarly, the other differ-
ences are also much smaller thag_,. Therefore, as a first
approximation for largeN we can take all thmki’s to be

equal toMN. Substitution of these 's in Eqg. (38) gives

m(Kg)=MN"1 (for N—).

Thus, to conclude, we see that the asymptotic relaxation
time 7 crucially depends upon the particular model one
chooses; it varies abl?> with model | and asMN~! with
model Il. It would be interesting to obtain the exact analyti-
cal solution of theN-ball M-urn “pure entropic barrier prob-

Therefore r(KO) the mean time required for all the balls to lem” of Ritort [4], wherein the urn which becomes empty is

come into one urn for the first time, is given by

taken out of the process.
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