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Exact solutions of some urn models of relaxation in glassy dynamics

D. Arora* D. P. Bhatia, and M. A. Prasad
Radiological Physics and Advisory Division, Bhabha Atomic Research Centre, Mumbai 400085 India

~Received 16 December 1998!

We consider two simple models, called ‘‘urn models,’’ for a generalN-ball, M-urn problem. These models
find applications in the study of relaxation in glassy dynamics. We obtain exact analytical results in these two
cases for the average relaxation timet to reach the ground state. In model I we also obtain the functional
dependance oft for largeN, and in model II we obtain an asymptotic (N→`) dependence oft as a function
of the number of urnsM. @S1063-651X~99!03207-9#

PACS number~s!: 64.60.Cn, 75.10.Nr
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Urn model problems are classical problems in probabi
theory @1,2# which have been widely studied. An attractiv
feature of these problems is that they are easy to formu
but not always easy to solve. The solutions obtained ha
therefore, sometimes led to new mathematical techniq
and insights. These problems have also been popular
physicists as models of physical processes. In the last
years, many papers@3–7# have appeared in literature o
some specific urn models as models of the slow dynamic
glassy systems. Objections may be raised on the grounds
the models are far too simplistic to really capture all t
features of the complex system. We feel that the study
these models is interesting in its own right, and does sh
some features such as a critical slowing down as the sys
approaches the ground state. In this paper, we obtain e
analytical solutions for two urn models. Ritort’s model@4# is
probably the first such model used for this purpose. In t
model one considersN distinguishable balls which are dis
tributed inM boxes. The dynamics is defined as follows.
each time step a ball is picked up randomly and indep
dently, and moved to a random nonempty box. Moving
ball to an empty box is not allowed. This restriction cons
tutes what is popularly known as the entropy barrier, sin
as the number of empty boxes increases with time, there
fewer and fewer boxes available for the transference of
ball, i.e., fewer paths in the ‘‘phase space’’ where energy
decrease.~Energy is defined as minus the number of em
boxes present at any time.! Thus relaxation of energy be
comes slower with time. Ritort’s model showed that the
laxation timet averaged over an ensemble of initial config
rations of N balls in M boxes to the ground state goe
asymptotically as

t50.39 exp~0.67N!. ~1!

Making use of the fact that in Ritort’s urn model, the syste
before it reaches the ground state~i.e., all the balls are in one
box!, has to pass essentially through a specific configura
where one ball is in one urn andN21 balls are in anothe
urn, Lipovski @5# found an exact expression fort for the
N-ball and two-urn model problem, which enabled him
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find a lower bound fort for the N-ball M-urn problem ast
52(N21)1N23 by a recursive analysis. Complementin
upon Lipowski’s work, Murthy and Kehr@6# considered the
two-urn problem and solved it for an arbitrary initial distr
bution ofN balls @i.e., anyK balls in one urn and the remain
ing (N-K) balls in another urn#, and found upper and lowe
bounds for the relaxation time for various initial arbitra
states of the system size (N). They concluded thatK51 sets
the principal time scale of the problem, and the relaxat
from other states takes negligibly more time than this
large systems. To the best of our knowledge there exists
exact analytical solution of this problem forM (.2)-urn
N-ball case. To this end, in this paper we consider two s
models, namely, models I and II~to be defined explicitly
below!, and find an exact analytical formula for the rela
ation timet for these two models. It may be noted that o
model I is the same as model C of Ref.@7#, whereas our
model II differs from their model A.

Model I: We start with an initial distribution ofN balls in
M urns given byK̄05(k0

1 ,k0
2 , . . . ,k0

M), wherek0
i is the num-

ber of balls in thei th urn at the start. At each time step tw
balls are picked out ofN balls such that every pair has a
equal probability of being picked up. Both balls are th
placed into the urn to which the second ball belonged. T
dynamics is such that the ground state corresponds to
coming into a single urn. The quantity of interest is the a
erage number of time stepst required for this event to occu
for the first time. This is given by

t5(
i 51

M

(
n50

`

n f~ki ,n!, ~2!

with

(
n50

`

f ~ki ,n!5 f 0~ki !, ~3!

where f (ki ,n) is the probability that thei th urn contains all
N balls for the first time aftern time steps,f 0(ki) is the
probability that thei th urn is filled with all N balls, and
f (ki ,n)/ f 0(ki) is the conditional probability that this even
occurs for the first time at timen. Notice that the dynamics
of the process is such that if any urn becomes empty
automatically goes out of the reckoning. Thus our mode
:

t.in
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exactly like model C of Ref.@7#. Though this problem can b
solved directly, we found it convenient to solve it in tw
stages. In the first stage, the average time taken for a sp
fied urn to either contain allN balls or become completel
empty was computed, and this was then used to compute
quantity of interest.

Let g(k,m) be the probability that an urn contains allN
balls or is completely empty for the first time afterm time
steps given that it hadk balls at the start~herek5k0

i ; for
convenience we have dropped the superscript and subsc!.
We note that the dynamics of the process is such that
distribution of the balls in the other (M21) urns does not
affect this quantity. We then write the recursion relation

g~k,m11!5
k~N2k!

N~N21!
@g~k11,m!1g~k21,m!#

1S 12
2k~N2k!

N~N21! Dg~k,m!. ~4!

Multiplying by m and summing, we obtain

mk50.5@mk111mk21#1
N~N21!

2k~N2k!
, ~5!

wheremk5(m50
` mg(k,m), and Eq.~4! is to be solved with

the boundary conditions

m050; mN50. ~6!

Defining Dk5mk2mk11 we have from Eq.~5!,

Dk5Dk211
N~N21!

k~N2k!
. ~7!

Here the method of solution differs slightly forN even andN
odd. We solve it for the caseN52L. Using Eq.~7!, we have

DL5DL211
2L~2L21!

L2
. ~8!

However, because of symmetry,DL2152DL . Therefore,

DL5
2L21

L
. ~9!

Using Eq.~7! repeatedly, and summing, we have

D i5DL1N~N21! (
k5L11

i
1

k~N2k!
~10!

and

mN215DN215
2L21

L
1 (

k5L11

N21
N~N21!

k~N2k!
. ~11!

We also obtain
ci-

he

t
e

mi5 (
j 5 i

N21

D j5
~N2 i !~2L21!

L
1 (

j 5 i

N21

(
k5L11

j
N~N21!

k~N2k!

5
~N2 i !~2L21!

L
1 (

k5L11

N21
N~N21!

k
. ~12!

Now, in order to have all the balls in one urn we use t
quantity f 0(k), which is the probability that an urn contain
ing k balls at the start contains allN balls at any time. Also
let f (k,n)/ f 0(k) be the conditional probability that this ur
contains all theN balls for the first time at timen:

f 0~k!5 (
n50

`

f ~k,n!. ~13!

The starting equation forf (k,n) is the same as in the
earlier case:

f ~k,n11!5
k~N2k!

N~N21!
@ f ~k11,n!1 f ~k21,n!#

1S 12
2k~N2k!

N~N21! D f ~k,n!. ~14!

Summing Eq.~14! over all n, we obtain the recursion rela
tion for f 0(k) as

f 0~k!50.5@ f 0~k11!1 f 0~k21!# for 1<k<N21.
~15!

This is to be solved subject to the boundary condition

f 0~N!51,

f 0~0!50. ~16!

Equations~15! and ~16! yield

f 0~k!5
k

N
. ~17!

Now we use this quantityf 0(k) to find the number of time
steps required to obtain all the balls in one urn. We multip
Eq. ~14! by n11, and sum over alln, to obtain

nk50.5@nk111nk21#10.5@ f 0~k11!1 f 0~k21!#

1
N~N21!22k~N2k!

2k~N2k!
f 0~k!. ~18!

The boundary conditions are againnN50 and n050. De-
fining Dk5nk2nk11, we have

Dk5Dk211gk , ~19!

where gk5 f 0(k11)1 f 0(k21)1„@N(N21)22k(N
2k)#/2k(N2k)…f 0(k). Substituting forf 0(k) from Eq.~17!,
and simplifying, we have

gk5
N21

N2k
. ~20!

This yields
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D i5DN212Gi

where

Gi5 (
k5 i 11

N21

gk . ~21!

Therefore,

nL5 (
j 5L

N21

D j

5~N2L !DN212 (
j 5L

N21

(
k5 j 11

N21

gk

5~N2L !DN212 (
k5L11

N21

gk(
j 5L

k21

1

5~N2L !DN212 (
k5L11

N21
~2k2N!~N21!

2~N2k!
.

~22!

Because of symmetry, we have

nL5~1/2!mL . ~23!

Substituting for8nL from Eq. ~12!, we have

nL5
2L21

2
1 (

k5L11

2L21
N~N21!

2k
~24!

for largeN; this yields the resultnL;N2/2ln2.
We may rewrite Eq.~22! as

nN215

nL1 (
L11

N21
~2k2N!~N21!

2~N2k!

N2L
. ~25!

With a little algebra we obtain, for largeN, nN21;N lnN
2N, and using this result and Eq.~2! for largeN we obtain

t;N2. ~26!

The functional dependance oft on the number of urnsM

will depend on the initial distributionK̄0 of the balls in the
urns.

Model II: In this model at each time step one ball out
theN balls initially distributed arbitrarily inM urns is drawn
randomly and placed randomly in an urn different from t
one from which it was drawn. The quantity we are interes
in is the time taken for all the balls to move into a single u
for the first time. In the case considered by us, even if an
becomes empty at some time, it is still taken into consid
ation, unlike in model A of Ref.@7#, where any urn, when i
becomes empty, is taken out of the reckoning. We define
events. Event 1: Urn i is filled for the first time assumin
that the dynamics remains the same till this event. Even
The first time any of theM urns is filled. Event 1: Let
f (ki ,n11) be the probability that urni is filled for the first
time at timen11, given that at time 0 it hadki balls. Note
d

n
r-

o
,
2:

that this probability is independent of the distribution of t
remaining N2ki balls in the other M21 urns. Then
f (ki ,n11) , satisfies the recurrence relation

f ~k,n11!5
k

N
f ~k21,n!1

N2k

N~M21!
f ~k11,n!

1
~N2k!~M22!

N~M21!
f ~k,n! ~27!

~here we have dropped the subscripti of k for ease!, which
yields

nk5
k

N
nk211

N2k

N~M21!
nk111

~N2k!~M22!

N~M21!
nk11.

~28!

This gives

N2k

N~M21!
Dk5

k

N
Dk2111,

D05M21. ~29!

After some algebra we obtain

Dk5S1kD01(
j 51

k

t jSj 11,k , ~30!

where

Sjk5)
l 5 j

k

sl ,

sl5
~M21!l

N2 l
, ~31!

and

t j5
N~M21!

N2 j
.

We also havenN50. Thus

ni5 (
k5 i

N21

Dk . ~32!

Event 2: Let us consider the case of M urns. LetKW

5k1 ,k2 , . . . ,kM andgi(KW ,n) be the probability that urni is
filled up at timen before any of the other urns gets filled u

f ~ki ,n!5gi~KW ,n!1(
j ¬ i

M

(
n850

n

gj~KW ,n8! f ~0,n2n8! .

~33!

Note thatgi depends onK̄0 the full initial distribution. The
moment generating function of Eq.~33! yields

f̃ ~ki ,z!5g̃i~KW ,z!1(
j ¬ i

M

g̃j~KW ,z! f̃ ~0,z!, ~34!
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where

f̃ ~ki ,z!5 (
n50

`

f ~ki ,n!zn. ~35!

Summing over alli ( i 51,2, . . . ,M ) and definingG(KW ,z)
as

G~KW ,z!5(
i 51

M

g̃i~KW ,z!, ~36!

we obtain

G~KW ,z!5

(
i 51

M

f̃ ~ki ,z!

11~M21! f̃ ~0,z!
. ~37!

Therefore,t(K0
W ), the mean time required for all the balls

come into one urn for the first time, is given by
nd
t~K0
W !5

dG

dzU
z51

5

(
i 51

M

nki

M
2

M21

M
n0 . ~38!

We can now find an asymptotic (N→`) expression for

t(K0
W ). From Eq.~30!, after a little algebra, it is easy to se

thatDN215MN21, which impliesnN215nN1DN21;MN.
Further, DN22;MN/N!DN21. Similarly, the other differ-
ences are also much smaller thanDN21. Therefore, as a firs
approximation for largeN we can take all thenki

’s to be
equal toMN. Substitution of thesenki

’s in Eq. ~38! gives

t(K0
W )'MN21 ~ for N→`).
Thus, to conclude, we see that the asymptotic relaxa

time t crucially depends upon the particular model o
chooses; it varies asN2 with model I and asMN21 with
model II. It would be interesting to obtain the exact analy
cal solution of theN-ball M-urn ‘‘pure entropic barrier prob-
lem’’ of Ritort @4#, wherein the urn which becomes empty
taken out of the process.
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